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An implicit finite difference scheme is studied for applications to time-dependent 
flow of a polytropic gas in one dimension. The method is a two-step scheme applied to 
the Eulerian equations. The scheme is conserving, and can be. used for shock smearing 
applications. A stability analysis demonstrates that the method is unconditionally 
stable to small disturbances. Computations have been performed with time steps larger 
than permitted by the CFL condition for a three-point explicit scheme. 

1. INTRODUCTION 

There are numerous finite difference methods in general use that are suitable 
for the calculation of time dependent, inviscid, compressible flow fields. In general, 
such methods smear any shock wave discontinuities over several grid points, and 
comparison of this dissipative property has been the subject of several detailed 
surveys [l-3]. The effective shock smearing is of interest since it displays the trunca- 
tion errors resulting from the difference approximation in an intricate balance with 
the nonlinearities of the equations of motion [4], and results in a convenient basis 
for comparison of methods. These surveys show that current difference methods 
for shock smearing are well developed, useful tools. Since the most widely used 
methods are explicit, the question arises whether there would be any advantage in 
developing an implicit scheme. An implicit scheme would couple together all mesh 
points at the same time level, and therefore, would be expected to relax the neces- 
sary stability conditions. This advantage would presumably be blunted by a 
somewhat larger number of computations required at each mesh point. A second 
objection is that, should an implicit method use twice the time step of an explicit 
method, it would have roughly four, eight or sixteen times the time dependent 
truncation error for first, second or third order accuracy, respectively. Since trunca- 
tion errors are large at the shock front, fine resolution of the shock could not always 
be expected for an implicit method operating in a range of step sixes that is econom- 
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ical for computation. In the following, an implicit scheme is studied which appears 
to be economical in a wide range of weak shock applications. 

Implicit difference techniques have proven to be successful for quasilinear hyper- 
bolic systems of equations in nonconservation form [5]. In this case, the difference 
method is developed with the goal of yielding linear difference equations. However, 
applications of implicit techniques have been more restricted when the equations 
are of conservation form. For then, the difference equations yield a simultaneous 
system of nonlinear equations coupling the values at all grid points at the new 
time level. The basic approach is to solve this system of equations by an iterative 
technique. In terms of the difference method applied to the differential equations, 
this iteration can be viewed as a predictor-corrector method. The earliest and most 
widely studied approach was initiated by Gary [6,7] in which an explicit predictor 
was followed by a stabilizing, implicit corrector which was iterated upon a specified 
number of times. The predictor was the unconditionally unstable scheme formed 
by centered space differences and forward time differences, and the overall scheme 
was stable or unstable depending upon the number of iterations that were made 
on the corrector at each grid point. The explicit predictor approach was refined 
by Abarbanel and Zwas [8] to include the use of the Lax-Wendroff predictor with 
artificial viscosity. Recently Gourlay and Morris [9] proposed an implicit corrector 
which does not require iteration and which maintains conservation form. 

As an alternative to the above methods, an implicit predictor can be used in 
conjunction with the corrector. The corrector, then, is not necessary for stability, 
and can be used to increase the order of accuracy as was suggested by Douglas [lo]. 
Or, the corrector can be used to restore conservation as was suggested by Yanenko 
and Yaushev [I l] for the Lagrangian form of the equations of motion. The central 
idea of the method is to obtain an implicit predictor by quasilinearization of 
the differential equations. The resulting system of difference equations is linear and 
unconditionally stable. This method has the advantage of not requiring the corrector 
for stability, and hence the corrector need only be applied once. The power of the 
method lies in the freedom to choose any implicit predictor that has been developed 
for quasilinear hyperbolic equations. 

Two variations of a scheme for implementing the implicit predictor-corrector 
technique are presented below. Both methods are applied to the Eulerian equations 
describing one dimensional, time dependent flow of a polytropic gas of exponent y. 
The implicit predictor is based on the normal or characteristic form of the equations 
and employs one-sided differences along the lines first suggested by Courant, 
Isaacson and Rees [12] for explicit methods. Overall conservation is restored by the 
second or leap-frog step. The resulting difference equations are first or second order 
accurate depending upon the size of the time step used in the predictor relative to 
the time step used in the corrector. This ratio will be denoted by 6. The effect of 
various time steps for the predictor [9] and of various averaging methods [l] of the 
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predictor values with the current time level dam have been extensively studied for 
the two step version of the Lax-Wendroff method [13]. Such studies have shown 
that the shock smearing behavior may be widely modified and improved by the 
choice of the averaging technique. Similar freedom is available in the present 
method, but the great number of possible choices has not been investigated. 

In addition, it should be noted that the extension of the one dimensional scheme 
to multidimensional problems can be formally achieved by fractional step tech- 
niques. Splitting formulas of first, [14] second [ 151 and third [16] order accuracy 
are available. As noted by Burstein and Mirin [ 161, it would be advantageous to use 
an implicit operator for one direction in a multidimensional splitting scheme when 
that direction is primarily responsible for stability restrictions. Hence one dimen- 
sional implicit schemes of the type studied here may lead to mixed implicit-explicit 
schemes with greatly relaxed stability requirements for multidimensional problems. 
Use of such schemes has not yet been attempted to the author’s knowledge. 

2. DIFFERENCE METHOD 

The predictor is based on the characteristic form [ 171 of the equations of motion, 
a selection also made by Yanenko and Yaushev [ll]. The characteristic form is 
computationally more convenient than the quasilinear convective form of the 
Euler equations. Since the equations of the system are uncoupled in the derivatives, 
the coefficient matrix corresponding to each family of the characteristic system 
may be inverted separately without resorting to block matrix techniques. In 
addition, the characteristic form permits easy inclusion of the boundary conditions. 
Since the equations of motion are redundant at the boundary to admit the boundary 
conditions, only certain linear combinations of the momentum and continuity 
equations remain of use there. These linear combinations are equations of the 
characteristic system. Hence at the boundary there is a one to one correspondence 
with the boundary conditions, and the resulting system of equations is solved 
simultaneously. 

In conservation form, the equations of motion are given by 

Wt +-fix = 0, 

where w and f are vector-valued functions 

(1) 

(2)s (3) 

with E = e + ?&, e is the internal energy of the gas and H = E + p/p. The 
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characteristic form of these equations is derived by diagonalizing A(w), the Jacobian 
matrix offwith respect to w. These equations have the simple form for a gas with 
polytropic exponent y, 

Ut + A’ue = 0, (4) 

where 

(519 (6) 

where I = [2/(y - I)] c + u and s = [2/(y - l)] c - u are the Riemann invariants, 
and S, the entropy function. The nondiagonal appearance of (5) and (6) is due 
to the introduction of the Riemann invariants when the flow is nonisentropic. 

Let h and T denote the increments in the x and t coordinates respectively, and let 
subscripts indicate the value at the grid point and superscripts indicate the value 
at the time level. At the nth time level, the value of w at the kth grid point is rvlcn. 
The second step of the method uses the leap-frog difference expression applied to 
Eqs. W-(3), 

wk 
a+1 = w n 

k - (mmG2) - fwz,dl. (7) 

. . The quantities wk”+i”ls are subsidiary values determined by the first step, where 8 
is a number between 0 and 1 denoting the fraction of the total time step T that was 
used during the predictor step. Hence 0~ is the predictor time step, and 6 = 4 
represents second order accuracy of the overall method. 

The implicit step is used to advance the variables at the time layer tn to their 
values at the time layer tn+e = tn + 9 T. The scheme uses one sided differences 
applied to the characteristic form of the equations. Let d, and d- denote forward 
and backward differences respectively, and let d denote the following general 
upwind difference operator 

d = $[(A+ + A-) - sign(A,‘)(d+ - A.)], (8) 

where sign (A,‘) has the value of +l or - 1 respectively when the particular 
diagonal element of A’ is positive or negative. Since 

Ll, - A- = Ll+L = LA, 

the difference operator (8) always introduces a truncation error which is a second 
difference of indefinite sign. In the full set of equations, the coefficient of the second 
difference is the positive quantity A,,,’ sign(A,‘), and hence the scheme is dissipative. 
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The difference equations are therefore 

The quantity fig+;,,, is not directly available from the data provided by the corrector. 
The two schemes that are studied differ in the method of evaluation of this quantity. 
For scheme I, 5i+1,2 is assigned the value of either ukn or r~g+~ depending upon the 
value of sign(A,‘). This switching operator can be written in terms of averaging 
and central difference operators. Let p denote the averaging operation 

P~k+l/z = ok+1 + Vkh 

and let A,, denote the central difference operation 

Aovlc+m = ok+1 - vk. 

Then the operator denoting the selection process will be given by 

rl = p - 4 sign(A,‘) A,, . (10) 

The operator (1, if used without the implicit term of Eq. (9), represents the explicit 
finite difference method proposed by Godunov [13]. Therefore, the predictor 

we 
vk+1/2 = A4?+l/2 

represents a conditionally stable method when used in conjunction with Eq. (7). 
Use of the Scheme I expression 

~~+I,, = mi+1,2 (SCHEME I) (11) 

in Eq. (9) does not yield a predictor of first order accuracy. To achieve first order 
accuracy, the term 4 sign(A,‘) dvz$, must be added to Eq. (9) to cancel the 
contribution from the second term of Eq. (10). This modification is only required 
in Scheme I. 

The evaluation of 6E+1,2 used in Scheme II is much more direct, being given by 
the average of the adjacent mesh points, 

ma 
vk+112 = /-4h2 * (SCHEME II) WI 

The predictor equation resulting from the substitution of (12) into Eq. (9) is 
first-order accurate. 

The remaining quantities that are not directly defined by the data at the mesh 
points are the non zero elements of each matrix A&,, . For both schemes, 
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this evaluation was made in the manner consistent with the previous evaluations of 
8” k+112 , that is 

A L/2 = AV;+,,A (SCHEMES I, II) (13) 

where A’ is the matrix function defined by Eq. (6), and eI++1,2 is determined by the 
corresponding Eq. (11) or (12). Since A in equation (11) depends upon sign(d,‘), 
this last evaluation is formally implicit for Scheme I. However no difficulty was 
encountered in making the equation explicit by assigning values to sign(A,‘) as 
indicated by the neighboring mesh points. 

3. SOLUTION OF DIFFERENCE EQUATIONS 

In the computed examples, the wall or closed end is taken at the left-hand end 
of the mesh and the right-hand end of the mesh is assumed to be an open-ended 
tube. Let the wall be situated between k = 0 and k = 1, then the condition u = 0 
requires that 

d%e - s112 - n+a - 0 * 

This equation replaces the equation of the r-family, since the domain of dependence 
of the r-equation (the first component of the vector equation (9) at the wall) 
lies beyond the end of the grid; however, the s-equation (the second component of 
vector equation (9) at the wall) remains valid 

where 5’ is the coefficient of the difference operator in the second component of 
Eq. (9). 

The right hand boundary will be situated between k = K and k = K + 1. If 
the inflow is subsonic, the r-equation can be applied at the end of the grid 

where t is the coefficient of the difference operator in the first component of Eq. (9). 
The second condition is taken to be the constant pressure condition, 

rELL2 + sEL2 = [4/b - 01 cc0 3 

applicable for an open ended tube, and which replaces the s-equation at this point. 
To avoid the necessity of employing block matrix techniques the r- and s-systems 
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can be viewed as coupled only by a single parameter, while the S system is entirely 
uncoupled. Dropping 4 from the subscripts and dropping superscripts altogether, 
the r-system can be written: 

-akrk+l -b bkrk - ckrk-l = dk , l<k<K--I, 
bKrK - cKrK-1 = dK , 

which is a tridiagonal system of K + 1 equations for the K + 1 unknowns rk , 
with a parametric dependence on sO . Similarly the s-system is 

-a,,‘s, + b,‘s,, = do’, 
-ak’Sk+l + bk’sk - ck’sk-1 = dk’, 1 <k<K-1, 

rK f SK = dK’, 

which is a tridiagonal system of K + 1 equations for the K + 1 unknowns sk , with 
a parametric dependence on rK . 

These coupled tridiagonal systems are solved by an extension of the method of 
gaussian elimination recommended by Richtmyer [ 131. The solution to the r-system 
will be found from the recursion formula 

rk = ekrk+l + fk + gks0 , (14) 

which represents a backward substitution process. The pammeterS ek , fk , and gk 
are found recursively by a forward elimination process starting from the first 
equation and finishing with the Kth equation. The recursive evaluation of rk 
from (14) by back substitution cannot be started immediately after all the e, f and g 
are found since so is still unknown. Combining the substitution equation (14) and 
the Kth equation of the system, gives one of the expressions 

rK =fK +gKs09 

which couple the r and s systems together. 

(15) 

For the s-system the elimination and substitution are performed in the opposite 
direction to the r-system. Thus a forward substitution formula is assumed: 

Sk = ek’sk-1 + fk’ + gk’rK . (16) 

The values of e,‘, fk’ and gk’ are found recursively by a backward elimination 
process starting with the Kth equation and finishing with the first equation. 
Combining the substitution equation (16) and the first equation of the s-system 
results in the second coupling equation to be satisfied simultaneously with Eq. (15) 

SO = f0’ + go’rK . (17) 
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Hence after elimination has been completed on both systems of equations, the 
simultaneous set (15) and (17) are solved to determine so and rK . Once so and rX 
are known, the substitution formulas (14) and (16) can be evaluated recursively 
for the remaining unknowns rK and Sk, respectively. 

There are only four additional multiplications and two additional divisions 
required at each grid point over that required by an uncoupled system. This 
procedure is much more efficient than would be required if the predictor were 
not in characteristic form. In that case a nine-diagonal wide band matrix would 
have to be inverted. 

4. STABILITY ANALYSIS 

In many applications of finite difference methods to hydrodynamic problems, 
stringent stability conditions may have to be satisfied in some retricted part of the 
flow field. This situation may arise, for example, when a mesh of nonuniform 
spacing is employed, or when the Jacobian of the transformation to a mesh of 
uniform spacing becomes small. As a consequence, the time step will have to be 
much smaller than the desired interval of data output. For multidimensional 
problems based on splitting techniques, it has been demonstrated [18] that the 
time step should be of nearly the same step size as the data output interval. A 
reduction in the severity of the stability condition would be of importance to 
applications of this type. 

The principal limitation on the time step size is the CFL requirement that the 
domain of dependence of the difference scheme contain the domain of dependence 
of the partial differential equations. The relaxation of the stability requirement 
for an implicit scheme is due to the extension of its domain of dependence to the 
entire flow region, while an explicit three-point scheme can only have a domain 
of dependence of 2h. In practice the larger domain of dependence only achieves 
a limited extension for the highly nonlinear problem. The procedure used in 
linearizing the difference equations must fail with large enough time steps, and it 
is difficult to say for exactly what time step it will fail. 

The linear stability analysis is based on the Fourier technique for the system of 
linearized equations. Linearizing about the uniform state &, jj, j yields the simplified 
system of perturbation equations 

p; + q&z’ + P%’ = 0, 

4’ + WC’ + u//3 Pn’ = 0, 

e,’ + tie,’ + (p/j) u,’ = 0, 

where primes denote a perturbation from the uniform state. Substituting that 

58x/rz/r-7 
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e’ = e,p’ + eDpI, and forming certain linear combinations of these perturbation 
equations yields a differential system of the form 

where 
vt + Au, = 0, 

The corresponding difference equations are 

n+1 
vk = vkn - ($2) &g,Bl, - v;$,). (18) 

Each equation of this system corresponds to precisely one equation of the predictor 
system and hence the stability question can be investigated very simply. Let /3 
denote the value of the coefficient of the difference term in Eq. (18). For /I > 0 the 
corresponding predictor for Scheme I is given by 

a+9 
vk+1/2 

6 _- 
1+E 

v;:,",, = 

where [ denotes the coefficient of the difference term in (9). When p < 0, the 
predictor is 

5 v;:;,, + - v n+e 1 
1-t k+812 = 1 _ f - V&l * 

Scheme II is treated by replacing vkn and vn k+l by &(Vkn + V;+& in Eqs. (19) and (20) 
respectively. 

To determine the stability limits for Scheme 1 equations, the Fourier representa- 
tion is assumed, where A is the complex amplification factor and k is the wave 
number of the harmonic disturbance 

vk 
n = hne”km. 

If the harmonic disturbance is to be damped, then 1 A 1 < 1 is a necessary condition. 
Assume that /3 is positive, then I& (19) requires that the intermediate values from 
the implicit step are given by 
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Substitution of this result into Eq. (18) will show that the amplification factor h 
for the total scheme satisfies the relation 

x=1-p 
1 - .@w 1 + (5 - Is)P 

1 + .$(l - e+) = 1+&J ’ 

where p = 1 - e+‘. It is easy to show that the amplification factor magnitude is 
given by the result 

l-[Ih2= 2&l + 26 - /q(l - cos yJ) 
1 + ml + 00 - cos q4 * 

Since the trigonometric polynomial is positive, the scheme is stable for all time 
step values provided that 1 + 25 - /3 > 0, or from (9) when 

024 when B > 0, 

when 0 < 4 the amplification factor is greater than unity and disturbances are 
magnified. A similar analysis applied to Eq. (19) gives 

ea+ when /l < 0. 

The analysis is only trivially different for Scheme II, where it is found again that 
0 > Q is necessary for stability. The value of 19 for second order accuracy is seen 
to be at the stability boundary. An excess of damping is achieved by using an 
implicit step that is larger than the value for best accuracy. 

5. RESULTS 

Calculations of the propagation of a moderately strong shock wave, pressure 
ratio 5, in a gas of polytropic exponent, y = 1.4, were performed with various 
time steps. The overall time step is 7 and is indicated in the figures through the 
Courant number, 

Courant number = (I u 1 + c),, f , 

which has the value of at most unity for an explicit three point difference method. 
The ratio of the predictor to the corrector time step is the quantity 8. 

Figures l-5 demonstrate the behavior of Scheme 1 for increasing values of the 
Courant number. When the Courant number was close to one, the predictor- 
corrector time step ratio 8 could be reduced to its minimum value of 0.5. Figures 1 
and 2 show these results for Courant numbers of 1.0 and 1.3. From the monotonic 
results in Figure 1, it is apparent that the scheme was operating with first order 
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FIG. 1. Shock profile, for shock pressureratio 5.0, from computation with Courant number = 
1.0, theta = 0.5 and Scheme I: (a) pressure, (b) density. Numerical results -, theoretical 
values ---. 
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FIG. 2. Shock profile, for shock pressure ratio = 5.0, from computation with Courant 
number = 1.3, theta = 0.5 and Scheme I: (a) pressure, (b) density. Numerical results -, 
theoretical values - - - . 
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accuracy, and this is attributed to the use of the requirement that 87/h 1 A,’ 1 be 
greater than 0.5. These conditions require that the scheme becomes Godunov’s 
method for small enough time steps. At a Courant number of 1.5 or greater, which 
is a 50 % larger time step than permitted by explicit techniques, Scheme I would 
operate in a stable manner only with values of 8 > 0.5. 

In Fig. 3, the calculation of reflection of an incident shock with pressure ratio 5.0 
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(a) 

GRID NUMBER 
fbl 

FIG. 3. Shock reflection for an incident shock wave of pressure ratio = 5.0. Computation 
by Scheme I with Courant number = 1.3, theta = 0.5: (a) pressure, (b) density. Numerical 
results -, theoretical values - - - . Theoretical reflected shock pressure is 17.7. 

from a wall is shown. The wall is located at the left end of the grid with the wave 
incident from the right. Behind the reflected shock, the pressure at the wall agrees 
with theory [19] to within 2 %. The shock speed is also within 2 % of theory. The 
predictor-corrector time step ratio, 0, was 0.5, and the overall time step corre- 
sponded to a Courant number of 1.3 as in Fig. 2. This same reflection is shown as 
computed with a Courant number equal to 2.0 in Fig. 4. Weaker shock reflection 
problems have been successfully calculated at much larger time steps. Computations 
for weak shock problems are more successful since the characteristic form used 
for the predictor is more accurate for weak waves. For example, in Fig. 5 results 
are shown for reflection of a shock which has an incident pressure ratio of 2.0. 
This calculation was made with a Courant number of 3.0. 

Figure 6 shows results from calculations made with Scheme II. Pressure profiles 
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FIG. 4. Shock reflection for an incident shock wave of pressure ratio 5.0. Computation by 
Scheme I with Courant number = 2.0, theta = 1.0: (a) pressure, (b) density. Numerical results 
-, theoretical values - - - . Theoretical reflected shock pressure is 17.7. 
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FIG. 5. Shock reflection for an incident shock wave of pressure ratio = 2.0. Computation 
by Scheme I with Courant number = 3.0, theta = 1.0: (a) pressure, (b) density. Numerical 
results -, theoretical values - - - . Theoretical reflected shock pressure is 3.75. 
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are shown for two problems, shock propagation and shock reflection. For the 
pressure ratio 5 shock propagation, a comparison with Fig. 4 graphically demon- 
strates the differences between Scheme I and Scheme II. Scheme II always displays 
a much smoother and more smeared profile than does Scheme I. Although 
Scheme II appears smoother and more dissipative than Scheme I, it becomes 
unstable under a wider range of 0 and T than Scheme I. These highly smeared 
profiles are also evident in the weak shock reflection seen in Fig. 6. 

4.Or 
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(a) 
GRID NUMBER 

(b) 

FIG. 6. Computed shock profiles obtained for Courant number = 2.0, theta = 1.0, Scheme 
II: (a) shock propagation pressure profile for shock of pressure ratio = 5.0 (b) shock reflection 
pressure profiles for an incident shock of pressure ratio = 2.0. 

Of the two schemes, Scheme I appears to be superior on the basis of the tests. 
This scheme has been used for strong shock reflection studies and is found to 
operate in a stable manner, although the profiles can become ragged. On the other 
hand, when time steps are used that are comparable to the largest permissable with 
explicit methods, the scheme produces very smooth clean results. Perhaps the best 
performance of the method is in the transonic flow regime, where weak shock 
waves have been computed smoothly and cleanly at very large time steps. 

The computational labor involved in inverting the tridiagonal matrices at 
each time step is somewhat larger but comparable to that involved in evaluation 
of a sophisticated artificial viscosity. The method appears to run about 25 % 
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slower than the Richtmyer version of the Lax-Wendroff method with artificial 
viscosity. This comparison must be qualified as resulting from two widely differing 
programs. But on this basis the method would be economically attractive for 
Courant numbers on the order of 1.3 or greater. 
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